Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
نویسندگان
چکیده مقاله:
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken into consideration. In this paper, quantile regression model, by adding an adaptive elastic net penalty term to the random effects, is proposed and analyzed from a Bayesian point of view. Since, in this model posterior distribution of the parameters are not in explicit form, the full conditional posterior distributions of the parameters are calculated and the Gibbs sampling algorithm is used for deduction. To compare the performance of the proposed method with the conventional methods, a simulation study was conducted and at the end, applications to a real data set are illustrated
منابع مشابه
Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملBayesian quantile regression for longitudinal studies with nonignorable missing data.
We study quantile regression (QR) for longitudinal measurements with nonignorable intermittent missing data and dropout. Compared to conventional mean regression, quantile regression can characterize the entire conditional distribution of the outcome variable, and is more robust to outliers and misspecification of the error distribution. We account for the within-subject correlation by introduc...
متن کاملQuantile Regression for Longitudinal Data
The penalized least squares interpretation of the classical random effects estimator suggests a possible way forward for quantile regression models with a large number of “fixed effects”. The introduction of a large number of individual fixed effects can significantly inflate the variability of estimates of other covariate effects. Regularization, or shrinkage of these individual effects toward...
متن کاملBayesian quantile regression for censored data.
In this paper we propose a semiparametric quantile regression model for censored survival data. Quantile regression permits covariates to affect survival differently at different stages in the follow-up period, thus providing a comprehensive study of the survival distribution. We take a semiparametric approach, representing the quantile process as a linear combination of basis functions. The ba...
متن کاملSemi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کاملEfficient quantile marginal regression for longitudinal data with dropouts.
In many biomedical studies independent variables may affect the conditional distribution of the response differently in the middle as opposed to the upper or lower tail. Quantile regression evaluates diverse covariate effects on the conditional distribution of the response with quantile-specific regression coefficients. In this paper, we develop an empirical likelihood inference procedure for l...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره 2
صفحات 1- 16
تاریخ انتشار 2016-03
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023